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ABSTRACT

A model for the propeller-singing phenomenon considered as a self-
excited oscillation is presented to interpret the finding of a recent
experimental work: viz., that, although the singing frequency roughly obeys
the well-known Strouhal relation, once the strong singing state has been
established, the frequency is kept constant through a fairly wide range
of flow velocity, and consequently the frequency-versus-velocity diagram
exhibits step and jump characteristics. The model presented is a ''closed
loop" composed of a blade, as a mechanical-vibration system, and the Karman
vortex-shedding mechanism; the blade vibration controls the shedding mechan-
Ism, and the hydrodynamic reaction of shed vortices sustains the blade
vibration. The control imposed by the blade vibration upon the vortex shed-
ding actually implies the synchronization of the latter with the former.

The model which simulates the vortex-shedding mechanism is essentially a
simplified mathematical expression for the disintegration process of the
vortex sheets shed from the separation points into the rows of discrete
vortices. The stability criterion derived for the synchronized run of the
shedding mechanism, together with the positive-work criterion imposed upon
the phase relation between the blade vibration and the hydrodynamic reaction
of the shed vortices, gives a reasonable interpretation for the step and
Jump characteristics.

KEYWORD

Propeller-Singing
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NOMENCLATURE

shape parameter in "influence" functions (Equation [10])
growth-rate parameter of vortices

form constant (Equation [10])

shape parameter in "influence" functions (Equation [10])
chord length

integration constant (Equation [20])

dimensionless velocity (Equation [39])

trailing-edge thickness of body

function of vortex-induced velocity (Equation [39])
function defined by Equation (31a)

amplitude of hydrodynamic reaction force on blade
function (Equation [26])

natural frecuency of blade

shedding frequency of Karmdn vortices

mode shape of blade vibration (Equation [46])
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S = wd/u_ = 215,

S' = w'd/y_ = 215}
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unit step function
amplitude in blade-vibration mode shape

characteristic parameter in Hurwitz-Routh stability
criterion (Equation [36])

order of iteration process for criteria of stable
synchronization

constant = 1 or 2 (Equation [39])
"influence' function (see Equation [27])
Strouhal number = fk d/u_

non-dimensional frequency parameter of Karman vortex
at free-shedding state

non-dimensional frequency parameter at synchroni-
zation state

= time

flow velocity at separation point

steady component of flow velocity at separation point
velocity at which vorticity is flowed away

flow velocity at infinity

velocity induced by point vortex at separation point
(see Equations [1] to (4])

periodic component amplitude of flow velocity at
sepanat ion point
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neutral value of u, (see Equation [33])
see Equation (52)
coordinates in z-plane

physical plane

phase relation between velocities u, and Uy

neutral value of a (see Equation [33])

see Equation (52)

constants in "“influence'" functions (Equation [10])
circulation of point vortex (see Equations [1] to [4))
vorticity distribution in vortex sheet

mean vérticity in vortex sheet

shedding rate of vorticity from separation point

perturbation amplitude of vorticity distribution in
vortex sheet

small number
transformed plane

coordinates of (-plane

ix



N A

re w e

Subscripts

R-1059

phase angle between flow velocity due to blade
vibration and velocity of blade vibration at
separation point

expression given by Equation (34)
angular coordinate along blade chord (Equation [40])

expression given by Equation (26)

—_— bemed el R N  SEw

expression given by Equation (34)

angular frequency of free vortex shedding

angular frequency of vortex shedding at synchroni-
zation state = natural frequency of blade vibration

. —

refers to imaginary part
refers to lower separation point ]
refers to real part ]
refers to upper separation part

refers to flow velocity induced by blade vibration
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INTRODUCTION

The propeller-singing phenomenon has for a long time been understood
as a forced vibration of the blade due to the hydrodynamic reaction force

of the Karman vortices shed from the trailing edge.

Recently, however, an experimental studyl revealed a particular
feature of the phenomenon: though the relation of singing frequency versus
flow velocity roughly obeys the well-known Strouhal relation fk = St Eﬂ ,
the frequency in the strong singing state is nearly constant through a
fairly wide range of flow velocity and consequently (as is shown in Figure 1)

the relation of singing frequency versus flow velocity has steps.
Here

f, = shedding frequency of the Karman vortices

S, = Strouhal number

U = flow velocity

d = trailing-edge thickness of body

Each frequency at strong sinéing state (characterized by a step) seems to
correspond to one of the natural frequencies of the biade. During changes
in the flow velocity, a strong singing state appears on each step, and
successive changes cause the jump phenomena shown by the dotted lines in
the figure. This kind of phenomenon was also observed in the experiment

on suspension-bridge oscillation due to vortex shedding.2

Arnold et al3 interpreted this particular feature of the strong-
singing phenomenon as a special kind of resonance based on an experimental
hypothesis that the shedding frequency of the Kdrman vortices becomes
lower with increase in amplitude of blade vibration. However, as is
suggested by Krivstov and Pernik,l it is more natural to regard the
singing phenomenon as a self-excited oscillation of the system which in-
cludes the Karman vortices-shedding mechanism. In this paper, a model for
the singing propeller is presented along this line,

1
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SELF-EXCITED OSCILLATION LOOP FOR SINGING PHENOMENON

It is well known that the self-excited oscillation system is simu~
lated by a ''closed loop.!" For the propeller-singing phenomenon, the loop
will be expressed as is shown in Figure 2. The '"blade' element may be
regarded essentially as a mechanical-vibration system. The other element —
the Karman vortices-shedding mechanism — is, on the other hand, a self-
excited system which can continue to shed vortices periodically without any
periodic stimulation from outside. This element plays the more important
role in the singing phenomenon. The discrete structure of the Karman vor-
tices indicates that this self-excited system should have strong non-linear
characteristics. The important aspect of such a non-linear self-excited '
system is the phenomenon called ''synchronization' or "entralnment";u that
is, the operation of the non-linear self-excited system is often synchron-
ized with the periodic stimulation from outside which has a frequency not
so dlfferenf from the natural frequency of the system. In the present
problem the above-mentioned phenomenon corresponds to the synchronization

of shed vortices with blade vibration.

The blade element Is, as stated above, essentially a mechanical-
vibration system with large mass and stiffness, and definite natural fre-
quencies fb . The natural frequency of the Karman vortices-shedding
mechanism, given in the form fk = St %ﬂ, depends strongly upon the flow
velocity U_ . In the range of U_ In which fk differs largely from
the natural frequency of the blade fb , the vibration amplitude of the
blade due to the reaction force of the Karman vortices will be small, and
the signal from the blade element will be too weak to synchronize the

Karman vortices-shedding mechanism. In this condition, the loop in Figure 2

is open between these two elements, and the system is in the state of a
mere forced vibration caused by the reaction of the shed vortices. This

is the weak singing which occurs at the frequency corresponding to the
Strouhal relation. When U_ Is changed and fk approaches fb , the
smplitude of the blade vibration becomes large enough — in other words, the

i el NED W
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signal from the blade element becomes strong enough — to synchronize the
shedding of the vortices. Thus, the loop in Figure 2 is built up and the
system enters into the strong active state. Of course, in this picture,
it is necessary that the loop transfer function have unstable character.
If the shedding mechanism of the vortices can be synchronized with the
vibration of the blade through a fairly wide range of velocity, one can
see that, with the strong singing state established, frequency remains
constant at one of the natural frequencies of the blade, through a certain

flow-velocity range,

The strong singing state of the present model will occur when the
Karman vortices-shedding mechanism is synchronized with the blade vibration
and, furthermore, when a favorable phase relation between the blade vibra-
tion and the hydrodynamic reaction exists. |f these conditions are lost
by changing the flow velocity, the system will jump from the strong singing
state to a weak singing one with constant Strouhal number and will continue
In the latter state until it reaches the next natural frequency, where

another cycle of strong singing will appear.
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THE KARMAN VORTICES SHEDDING MECHANISM AND ITS
SYNCHRONIZATION WITH BLADE VIBRATION

To provide concrete support for the above discussion, a suitable
model for the vortices-shedding mechanism should be presented. Von Karman's
work notes the stability of the vortex rows, but it doe§ not explain how
these rows of discrete vortices come into existence. This, together with
the fact that we lack any record of experimental observations of the flow
near the trailing edge and in the wake of an oscillating body, proves a
stumbling block in the present analysis. A mathematical model will be
presented here which possesses the synchronization mechanism and the main

features of the above-mentioned propeller-singing phenomenon.

PRESENTATION OF THE MODEL

The vortex-shedding process may be dealt with by solving the Navier=-
Stokes equation under given conditions. The analytical approach, however,
seems desperate, and the numerical attack also seems hopeless (except for
the case of low Reynolds numper) even if a computer with large capacity
Is used. Another approach may be to treat the process as a kind of Helmholtz
instability prob!emS (using the method adopted by Rosenheads), since obser-
vation of the downstream flow of a body with a blunt trailing shape indicates
that the vortex sheets, which originate from the vorticity in the boundary
layers and are shed from the separation points, roll up and concentrate
into rows of discrete vortices a rather short distance away. The model
presented here is constructed on the basis of this description, with some
speculative mathematical simplifications which are adopted in order to
introduce a non~-linear oscillation version into the field of hydrodynamics
and to obtain a wider view of the particular feature of the singing phenome-
non described in the previous sections of this report.

As noted earlier, the vortex-shedding mechanism is a self-excited
system and itself should have a closed loop, which plays the role of a

— weme G SRR NS AN
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"minor loop'" in the main loop shown in Figure 2. On the basis of the fore-
going description, the synthesis of the loop of the shedding mechanism may

be given as follows:

(1) The existing downstream vortex rows exert a periodic flow distur-

bance upon the separation points.

(2) This flow disturbance at the separation points causes a
periodic disturbance in the strengths of the vortices which are

shed from the separation points into the vortex sheets,

(3) Thus the generated non-uniformity of the vorticity distribu-
tion in the vortex sheets plays the role of the embryo of the
discrete vortices; or, in other words, this non-uniformity grows

up into the Karman vortex streets.

The block diagram of the thus synthesized loop and the corresponding
schematic picture of the flow are shown in Figure 3.

If the blade is vibrating, flow disturbance due to the vibration
may be superimposed on that due to the shed vortices at the separation
points, as is shown in the block diagram of Figure 3 by a dotted line. This
flow disturbance due to blade vibration plays the role of the synchroniza-

tion trigger signal.

MATHEMAT ICAL EXPRESSION FOR THE CONSTITUENT ELEMENTS

Assuming two-dimensional ideal-fluid flow, the mathematical expres-
sion of the constituent elements for the foregoing model may be given as

follows:

(a) The Disturbance Velocity at the Separation Points
Induced by the Downstream Vortices
The velocities induced by the shed vortices at the separation points
are affected by the shape of the body. For simplicity, let us consider
first a circular cylinder body of unit radius. The coordinate system is
shown in Figure 4a. It is assumed that the flow separation points are
located at (x = 0, y = M 1) and that the vortices shed from the separation
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points are flowed away along th-. lines y = ¥ ). The induced velocity
Uuu(x) of an isolated vortex Fu located at (x = x, y =+ 1) and of its
corresponding image (as shown in Figure 4a) upon the upper separation point
(x =0, y =+ 1) is given as

Ty
"uu(x) = - (1)

Similarly, the effect of Ft at (x = x, y = =1) and of its corresponding
image upon the upper separation point is

r
2
uuz(x) - - -.‘,—:'- (l - 7—:-—2-,-) (2)

in the same way, the effects of Fu and Fz upon the lower separation
points are given by

r
ulu(x) - E;"! (l - :('—;-23—2'_) (3)
r
Uz‘(x) = Eé (u)

The functions Suu(x) R Su‘(x) , S‘u(x) , and S“(x) are introduced,
and we have

(x) (x)
S0 = S0 -
u 2
u, (x) : (x)
Sp,00) = ‘;iu Spp(x) = "‘,‘.‘ (5)

For convenience, these are called "influence functions,' since they represent
the effects of the unit strength vortex at (x = x, y = t 1) on the induced
velocity at the separation points., These functions are graphically ex-
hibited in Figure kb,

| Lt
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In the case of a body with trailing edge of parabolic shape (Figure 5a)
given by

Y = 1-(2/3) x (6)

with flow separation points at x =0, y = t 1, It is assumed that the
shed vortices are flowed away along the lines
% (2 + -l—)

+
= -
x+1

Y

which are tangential to the body surface at the separation points.

The conformal transformation

s =Jz-§-\lg (7)

which maps the flow field in the z-plane into the right half of the
C-plane (Figure 5b), provided that a cut along the x-axis from -= to 4/3

Is Introduced, determines the complex velocity potential by means of the
""'wall effect."” The influence functions Suu(x) . Su‘(x) . S‘u(x) , S‘z(x)
are evaluated and exhibited in Figure 5¢c. The influence functions for
both circular cylinder body and parabolic traliling-edge body exhibit the
following general features, as shown by Figures 4b and Sc:

(1) S, u(¥) = = Syx)
Su‘(x) - - Slu(x) (8)
(2) Suu(x) and Szt(x) have finite value at x = 0, while

Suz(x) and Szu(x) are zero at x = 0. These functions

have an incubation interval before a large rate of
increase appears with increasing x , and remain almost

constant at still larger x .
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(3) For large values of x ,
Su"(x) ~ Suu(x) and Szu(x) ~ Slt(x) (9)

By utilization of these general characteristic features, the influence
function can be approximately expressed by
-dlx
S, () = - Syx) = - he

]

Sul,(x) - - Szu(x) - (— Ae” ¥ % 4 Be-B,x) H(b) (10)

’

where H(b) 1is the unit step function at x=b and A, B, o', and

B’ are positive constants.

For further simplification, the motivation of which will become
apparent in the discussion which follows in a later section, it is assumed
that B=0, B’ = 0, and @' —~ 0 ; hence

Suu(x) - . Su(x) - lm (— Ae'dx)

a’'~0

Sul(x) = - Sl,u(x) = a‘:_'.mo [— Ae-a'x H(b)] (n) -

This simplification affects the results quantitatively, but presumably not
qualitatively.

(b) The Strength of Shed Vorticity in Terms of
Flow Velocity at Separation Points

Let the velocity distribution in the boundary layer, the velocity
outside the boundary layer, and the thickness of the boundary layer at the
upper separation point be designated by Uu(y) , Uu , and & , respectively.
The vorticity shed per unit time from the upper separation point Into the
upper vortex sheet is given by

8 d u (y)
I'su - j; uu(Y) :y dy = -;-U: (12)

— hesnd ol DEER e hewwi
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Similarly, for the lower separation point,

r, = %u’ (12a)

where Uz is the velocity outside the boundary layer at the lower separa-

tion point.

If it is assumed that the velocity at the upper separation point,
Uu , Is composed of the mean velocity Uou and a small perturbation velocity
of periodic nature, uoueiwt, then the vorticity shedding rate from the

upper separation point is given by

su 2 ou ou ou

r_~1 (u’ +20_u e‘“") (13)
and similarly from the lower separation point, by

LA T iwt
rst 5 (Uoz + 2Uoluoze ) (%)

(c) Concentrating Process, Vortex Sheets into
Discrete Vortex Rows

Rosenhead's treatment6 for the rolling-up phenomenon of the vortex
sheet in the Helmholtz instability problem indicates that the local distur-
bance in the vorticity density in the vortex sheet causes a geometrical
deformation of the sheet. This deformation gives rise to the migration
of the vortices in a manner which promotes the growth of vorticity density;
thus these two processes cooperate in causing an accelerating concentration
of vorticity. In the present treatment, a simple mathematical expression,
based on the above-mentioned feature of the Helmholtz instability problem,
Is given for the disintegration process involving the shedding of the vortex

sheets from the separation points into discrete vortex rows.

It is assumed that the process follows the pattern outlined below

and shown in Figure 6.

(1) The vortex sheets shed from the separation points are flowed



(2)

(3)

According to this picture the vorticity distributions in the upper and the
lower sheets may be expressed as

and

respectively, where Uw is the constant velocity in the x-direction by
which the vorticity is flowed away, T
densities In the sheets, and You(x) and Voz(x) are the amplitudes of
the disturbance terms in the vorticity densities.
continuity equation

where At

R-1059

away along the designated path.

+

The vorticity densities in the sheets have sinusoidal disturs
bances due to the periodic fluctuations in the vorticity-
shedding rate given by Equations (13) and (14).

The amplitudes of the disturbances Increase with distance

x from the separation points.

i i mmmd NER EEn e

iolt = (x/u)]

[

Fu(x,t) - rou + Yu(x,t) = Fou + You(x)e

(15)
wlt = (x/u)]
Ft(x,t) = Poz + yz(x,t) - FOL + Yoz(x)e

ou and FOL are the mean vorticity

On the basis of the

L e T el )

r_at = T U At S
su uw

is a specified interval of time, together with Equatlions (13) S

and (14), it is apparent that

U2 U u =
L . —ouou
Towu = 2 U Ybu(o) M (16) S
w w
and
U .3 -U ,u
-]l _of ol ol
r, -3 -8 v, (0) = -2kt (17) |
w w
It will be assumed that the process which embraces the passing of ‘

the vortices from the embryonic stage to complete disintegration into

10



8

e ey W (IR R U pmy  poa et pemad ey ey Py bl W

R-1059

discrete vortices is completed at the stage where the amplitude of the
perturbation vorticity density becomes equal to the mean vorticity strength
of the sheet.

The simplest mathematical expression which satisfies the above
requirement and fixes the growing rate with x of the disturbance ampli-

tudes | You(x)l and IYQL(X)I is assumed to be

rl Lol . A A -
It Irl T

where the constant a is the growth-rate parameter. The absolute value
has been introduced so that the above relation will hold true for either
upper or lower vortex sheet. It is obvious that this relation ensures the

final value of IYO(x)| as equal to |F°| ..

The solution is given by

I Yo(x)l . eax*c ('9)
|I" l I+eax+c
o
where the constant c¢ s
|y _(o)/r_|
c = UIn 9 2 (20)
1= |y tod/r |

The value of Yo(x)/lro| is graphically exhibited (see dotted lines) in
Figure 7, in terms of ax + ¢ . |If for simplicity the value of
IYo(x)l/Irol is replaced by a unit step function at ax + ¢ = 0 , then
it can be seen (from Figure 7) that a suitable approximation of the

function IYo(x)|/]F°| is obtained. Hence

|y°(x)| ) % | - |Y°(°)/To| (21)
Ir| o ()T

N



R-1059

where H(x) denotes a unit step function at x .

Applying Equation (21)

to Equations (15), (16), and (17), the vorticity distribution on the upper

and lower vortex sheets will be given by

-
v? u 1-2lu_ |2
Fu(x-t) - % Uou 1+ u°" f Ln ou___ou
w | You] 2|uou|/Uou
and
-
u? u 1 - 2|u_ |V
Mty =-4 2y oyl g, of __of
w luoL' 2|uot|/U°£
where
U = U +u fwt
u ou ou
and
{wt
Ug = Yor * You®

eIw(t-x/Uw)‘L

L

eIw(t-x/Uw)

(22)

are the velocities at upper and lower separation points respectively,

FREE SHEDDING OF THE KARMAN VORT!CES

Now it is possible to cow 0se a mathematical equation for the closed

loop of the vortices-shedding mechanism, The closed-loop equations with

respect to the upper and the lower separation points are

o L

oo

;uu(x) Fu(x,t) + Su‘(x) Fl(x,t)- dx

-

U, - U, -jo- -Su(x) I‘z(x,t) + Slu(x) I‘u(x,t)T dx (23)

B

where U_ denotes the uniform flow velocity at infinity and the other

12
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notations are as given in Equations (9) and (10).

Here, the following assumptions are introduced:

() Y00 = v (0 (24)

Therefore, from Equations (16) and (17),

- e |

u
ou ol

As can be seen in Figure 6, this assumption is imposed by the well-known

arrangement of vortices typical to the Karman vortex street.

(b) v = U -y, = 20 (25)

If the body is flat in the direction of the main flow, and if the wake
region near the trailing edge Is regarded as dead water, the relations of

Equation (25) should give a good approximation.

Then Equation (23), together with Equation (22), yields the time-
dependent part of the shedding mechanism:

lwt - )
u°‘l‘,e - / )suu(x) ——Q—lu "I H [% f(—l-I: ”I)] -5, (%) -—Q—lu L H[% f(z———I:“')]
® () u, ® uol' @

u

.elw(t-Zx/Um) dx

jwt
u_,e L u 2|u | u 2|u_ |
-——-—°:w - [ ’-S“(x) —-——l u:il H [-i- f(————u:L )] + Stu(") luoul H [-i- f( u:u )]

ou

.eiw(t-Zx/Uw) dx

where
J=x 2“ou L
f(x) = £n (";‘) and x = ——u—‘— (26)

13
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If the symmetrical relations, Equations (8) and (24), are taken into
account, the two equations in Equation (26) become identical and can be
expressed as

- fm [Sl(x) +5 (x)] u[l f(-z-uﬁ)]e"s" dx (27)
R A ] a '\T,

where | |
Yo = You T 7 Yos
S00 = 5,00 == 500 = Hn (.Ae'a'x)

U

00 = 5,00 = =500 - Mm 0]

S = 2w/U°°

If the representative thickness of the body is taken as 2 (the value taken

as the separation-point thickness) In the evaluation of S (x) and Sa(x).,
then

S = 2rrst (28)

where St is the Strouhal number.

It should be noted that, due to the symmetry relations introduced
by Equations (8), (24), and (25), the system of simultaneous equations
given by Equation (23) or (26) for the upper and lower separation points
Is reduced to a single equation (Equation [27]).

Upon Integration, Equation (27) yields

: (2u°)
u «f}§ = fl o
° . 1 a u -iSb
U, 1A s|e o/4e

for b > 1 (329)
@ \Us (29)
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or

u «-|1§ = f{ —
- mg' 22 2 \U,

U
| 2u
for b<—f (-—-52

-]

a U,

The real and Imaginary parts ofuthe above expressions are sufficlent to

determine the unknown S and UE .

o

SYNCHRONIZATION OF SHEDDING MECHANISM WITH
BLADE VIBRATION — STABILITY CRITERIA

’
If the blade vibration induces periodic flow disturbances uvue'w t

’
and uvze'w t at the upper and the lower separation points respectively,

these may act as a synchronization signal, as Is shown In the block diagram
of Figure 3. Assuming the symmetrical relation '

Uy = ° uvz(- uv) (30)

the loop equation for the synchronized condition is obtained as

' © 2 ’
;—q Y . elcx f [S1 (x) + Sa(x)] H[-:- f(.U:Q)] I RPN -ufv
) o ® ©

[ '
S" = w

(31)

where
2
u@
and o is the phase relation between u, and uy -

It should be noted that in the above equation the periodic disturbance
induced by the blade vibration is assumed to be known, whereas the total
perturbation velocity at the separation point, Uy and the phase angle «
are both unknown and will be determined by the solution of Equation (31).
It should be pointed out, also, that Equation (31) describes the neutral

15
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condition for the synchronization, and that there Is thus a possibility
that its solution will represent the unstable synchronization state, where
small deviations from the neutral condition may grow unboundedly with in-
creasing time, To exclude this possibility, a stability analysis for the
synchronization must be performed. The powerful method introduced by

Van del Pol for staBlllty analys|s7 cannot be utilized in the present case,
since Equation (31) Is an algebralc equation stating simply the neutral
condition; hence the timewise growth and decay of any deviatlion from this
condition is not taken into account. 1In this paper, the following approxi-
mate method will be used.

An iteration scheme is developed based on the fact that the nth

iterative values of u, and o , written in the form

u = u__+ (bu)
(3 00 o’n

@ = a4+ (Aa)n

can be obtained from their (n-1)th values,

Uy = Yot (Auo)n-l

and

¥ = a4 (a9) _,

(where Yoo and a  are the values at the neutral condition and Auo and

Ax are small deviations from these values) by means of Equation (31). Let

[ (f,_)] JACE L f(f,—)] 15X g

Then Equation (31) can be written as

u 2u u
ﬁﬂe"” — F[f(-u—o)]+-0! (312)

16
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Substitution of the nth iterative values on the left-hand side and the
(n=1)th values on the right-hand side of this equation ylelds

w Um Um

v+ (Au) ei[ao-c-(Aoz)n] ) el[ao+(Aa)n-l] FZf[-Z-(uoouno‘n-I)]‘*.:!

If only the zero- and first-order terms are kept in this iteration scheme,

the following approximate equation results:

Uso ldo (Auo)n o Yoo lao
TI: e + 0 e + i -U:(Aa)n
2u°o ia'o 2u°o iao
~ F f( U_ ) e + IF}f U ) (Aa)n_l e
ia u
df df o v
+ (df du) Budoye " *+g (32)
o/u =u ®
00
From Equation (31a), at the neutral condition,
Yoo ic:zO lao [(Zu o)] u, (33)
T = e FlFl—=2)| + & 33

Substitution of Equation (33) into Equation (32) ylelds

(au ) Yoo 2u
—ot . 22 dF df )
T i (Aa) (d fa o)u -, (Bu ) )+ iF[f( Um)] () |
o oo
Subtracting
(au) u
o n-l 20
g

17
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from both sides of the foregoing equation results in

du_) - (Au))
( uo n - uo ne=1 + 1 flj)__O_ [(Ad)n - (Aa)n-‘]

[- ] [+ -3

(Auo)n-l uoo
i ol L (34)

dF df 1
Y "[df'ﬁ_] 'Tj'zuw
o o

u U,
¢ = F -.U_OQ;—
u=u © uOO

[o] 00

Since (Auo)n - (Auo)n-l and (Aot)n - (Aof)n_I are the changes in Bu_ and
Ax per unit operation from n-1 to n , or the rate of change of Auo

where

and Ao , Equation (34) can be written, for the case of very slow rate of
change, as

d(Au ) u Au u
A o oo d{aa) o 00
U, "an ' U Tdn Yoty o (35)

which represents a system of first-order homogeneous differential equations
with unknown Auo and Ax . On assuming solutions of the form

o kn Yoo kn
-ﬁ: - uoe and 'E(Aa) = }\Oe

the following characteristic equation is obtained

Y -k ¢

r r
=0 (36)
Yi ’i -k
18
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where r and | denote real and imaginary parts, respectively. The
growth or decay of Au° and A s discriminated by applying the Hurwitz-
Routh criterfa. For a stable solution, |.e. decay of the deviations from
the neutral state, the conditions

(a) -(\l'r + Ql) >0
(37)
(b) Yo, -9Y >0

must be met.

The previously raised question of the stability at the synchronization
stage can now be tackled on the assumption that there is a very slow time-
wise change of the deviations Auo and A¥ . in such case the problem of
stability at synchronization is equivalent to the problem of the convergence
of the foregoing iterative process. Then Equation (37) may be regarded as
the stability criterion for synchronization.

Upon integration, as in Equation (29), Equation (31) ylelds

Yo o A -|s"f2u° -is’b] 1o Yy
EQ e = lgr|e TN + e e+ 7

' | ,2u°
for b> 5 f (T:) (38)
or
2u
u A | () u
o o _ A «iS = f( ) for v
T e i 57 [2 a 1 ] + U:

i 2u
for b << f(—g)
a v,

and the corresponding stability criterion, Equation (37), with the use of
(38), is

2u
| 00
(1) l-chos[S af(u )]+Dcosao>0

19
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D l - E Y ™
cos o - Eq cos 5 T,

- D Eqsina sln[s'l
(o] a

lc
<
[+ ]
3
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|
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SYNCHRONIZATION SIGNAL FROM THE BLADE VIBRATION AND
HYDRODYNAMIC REACTION OF THE SHED VORTICES

In order to complete the closed loop shown in Figure 2, the synchron-
lzation signal due to the blade vibration and the hydrodynamic reaction of
the shed vortices upon the blade should be evaluated. In the mathematical
treatments of those two quantities, the blade is assumed to be a flat plate,
and the thin-airfoil method is used. The corresponding coordinate system
is shown in Figure 8.

SYNCHRONIZATION SIGNAL DUE TO BLADE VIBRATION

The flow in the system under consideration is composed of two parts.
One is '""no circulation' flow due to the blade vibration and the other is
the flow with circulation due to the shed vortices. ''No circulation' means
that the total circulation around the body is zero. In Equation (31) or
(38), that flow velocity at the separation points which is due to the ''no
circulation' part is u, » and that due to the total flow is u, - Deriva-
tion of u, for the assumed mode of blade vibration follows.

Consider the bound-vortex distribution

fw't
Ypt) = v, (x) e

® ’,
- ZUw[Ao :—"’;43 - 1A, %‘:—fﬁ‘ﬁ +Z A sin ncp]e‘“’ t (4o)

n=2

where x = - %(l + cos 9) and C s the chord length. Clearly, this
bound-vortex distribution satisfies the '"no circulation' condition

O
fc Yoo (x) dx = 0 (1)

The strength of the bound-vortex distribution near the trailing edge

21
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PumNMaegcg, where T>>¢ >0, is given by

ybo((p - T a-g) ~-= ZUm(Ao + -;' A) 'el' (42)

Therefore, if ¢ = M - ¢ denotes the coordinate of the flow separation
points,

u = = U

1 1
vu ve T ° an(Ao +9A) ¢ (43)

2 1" ¢

This satisfies the symmetrical relation Equation (30), and u, can be
written as

) 1l
u, =- Um(Ao + < Al)

2 < (Lb)

For a particular vibration mode, Ao and A, are determined as follows:

The induced velocity of the bound vortex in the y-direction is

v, (8) '
v‘(x-t) = -zl—nf-%%(—- dg e'wt

= um[- Ao + EAn cos nw]eiw t (45)

If the vibrational velocity of the blade in the y-direction is given

by '

vb(x,t) = U_g(x) e (46)

then the boundary condition on the blade requires that
d d
vi(x,t) - (-a—t+ U-&) y, = O

where Yy is the vibrational displacement of the blade. The above

boundary condition can be written as

t
vl(x,t) -[vb(x.t) + m-aa—vab(x,t) dt] = 0

o

22
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and therefore Ao and A are determined by
A ET A ) - fﬂf ! N
- A, + n cos ng = g(x) - o’ 9 (x) (47)
n=1

HYDRODYNAMIC REACTION FORCE ON THE BLADE
DUE TO THE SHED VORTICES

To ascertain the existence of self-exciting singing, the vibratory
force exerted on the blade, due to the bound vortex and to shed vortices,
has to be evaluated and its phase compared to the vibration velocity of
the blade.

The hydrodynamic force exerted by the ''non-circulatory' component
of the bound-vortex distribution corresponding to any blade vibrational
mode has a virtual-mass term only and no damping component. On the other
hand, the reaction force of the shed vortices has a damping, as well as a
virtual-mass, component. Therefore, for the discussion on the existence
of self-exciting vibration, only the latter hydrodynamic force should be

taken into account.

The reaction force due to the shed vortices is evaluated by the
method used by Karman and Sears in non-stationary wing theory.8 As is
shown in Figure 8, the shed vortices are assumed to be flowed away along
the x-axis. The shed vortices have their counter vortices on the blades;
these are known as bound vortices. Thus the flow system due to the shed

vortices is composed of the vortex pairs. Then the momentum in the y-direc-

th

tion due to the i vortex pair is given by

I = ollxgy = %)) (48)

where o , Fi , and X denote the density of fluid, the circulation of
the shed vortex located at x , and the location of the counter vortex,

si
respectively. The force upon the blade due to the particular pair is

dI d
F = -===.p T Fi(xs. - x (49)

dt i~ i)

23
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Assuming for simplicity that the counter vortex Is concentrated at the
trailing edge (x = 0), Equation (49) becomes

F ==p—TI.,x (50)

in the present problem, the sum of the vorticity distributions from the
upper and the lower separation points ylelds

2 ’ ’
r, = uu['f(uu°)]e'[“’"s"] dx (51)

where the time origin is the same as in the case of Equation (31). The
total force acting upon the blade is then given by

d 4 2puwm' 1\@ i(x+ B - tan B + g)
- a—f XdX = ere—— S’ ('s—,) + wa e
o

(52)
where
| 2u -1
w = - f(ﬁr%) , B = tan ws'
a .

If the effective thickness of the blade at the separation point Is taken

as d ,
’ U.)'d
$ = —U:
and hence
> i@ +B -tan B + E)
F,o= Lou2d (s'—) s e 2 (53)
24
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EXISTENCE OF THE SELF-EXCITED SINGING STATE

The various constituent elements of the closed loop comprising the
propeller-blade vibration and the Karman vortices-shedding mechanisms having
been determined, it Is now possible to present a mathematical expression for
the existence of the self-excited singing state. In doing so, however, It

seems useful to summarize the previously obtained results.

(1) Blade Vibration to Synchronizational Signal

When the vibrational velocity of a point on the blade is given by
(x-t) = Ug(x) et u6)
vp{x- = U g(x) e (

the synchronization signal is expressed In the form of

o't 1 1wt '
u, e =-U (A +3A)Ce (k)

where

v
- A, +2;An cos np = 9,(") -1 37 g'(x) , x = -% (1 + cos 9) (47)
n=

and @ = T ¢ (M>>¢ >0) is the location of the separation points,

’
(2) Synchronized Operation of the Shedding Mechanism with uve'w t

The governing equation for the synchronization, after use is made
of the simplified expression Equation (11), is given by

2u
u /| [*] ’ u
o lo - A -5 = f(——) iSb ia v
—Ua e i S/ [e a Uo /+ ]e + _Uo

25
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or

| 2u
for b < 3 f ('Fg) (38)

Furthermore, the stability of the synchronization state requires that

2u
1 00
(1) 1 chos[s af(U >]+Dcosao>0

and

P zuOO
(11) D cos aogl-Eq cos[S ;f(um)]f

-DE Y |
asina sinfs’ - f(— >0 (39)

Equations (38) and (39) give uy and @ in the stable synchronized
condition for given synchronization signals u, and §'.

(3) Hydrodynamic Force Reaction Due to the Shed Vortices

When uo and o are given, the reaction force on the blade is

(53)

3 i(d+B-tanB + %)
b 2 S') +we

Fo= 4 pU° d (—'—

where the origin of time i: taken so that u, has a real positive value.

If the above results are used, the criterion for the positive work
of the reaction force upon the blade vibration can be obtained; this is
composed of the criteria for the existence of the self-excited singing
state together with that of stable synchronization, Equation (39), I or II.
In the first place, it may be assumed that the reaction force is concentrated

26
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near the trailing edge of the blade. As was stated earlier (p. 23) the

“no circulation' component of the bound vortices which is caused by the
blade vibration exerts no damping effect. Therefore, If the absolute value
wt
o't

of the phase difference between the reaction force F e' and the vi-

bration velocity of the trailing edge vb(o,t) = U_g(o)e is less than

‘g » the reaction force should exert positive work upon the blade vibration.

As Equation (53) has its phase origin at u, the criterion for positive
work is given by

-m<a+P-tanB+6<0 (54)
where, from Equations (46) and (44),

o't 1,41
ue 'l(Ao'.' 2 AI)C

\'4
O = a9 T, T %9 glemee)

27
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NUMERICAL CALCULATIONS AND DISCUSSION

/

’
FREE SHEDDING OF KARMAN VORTICES

For several values of A , b, and a , the unknown Strouhal number
and dimensionless veloclty'ratio uo/Uw are determined by Equation (29)
for the case of free shedding of Karman vortices. Both these unknowns are
determined by solving the real and imaginary parts of the above equation
simultaneously. Due to the complicated form of the function f(2uo/Um)
the equations are solved graphically and the corresponding results are

summarized in the following table.

 a A S u /vy

t 0o «

2 1/2n 0.202 0.141

2 0.8/2m 0.197 0.127

b=2 < 1 0.6/2m 0.175 0. 145
2 0.6/2" 0.191 0.110

3 0.6/2m 0.200 0.080

2 0.5/2m 0.185 0.099

The parameters A and b , which are shape parameters, can be sel-
ected according to the particular body shape. The parameter a , however,
which is related to the rate of growth of the disturbance in the vortex
sheet, can only be selected by trial. The selected values of A and b
seem to be reasonable ones, since (A = 3% , b=2) and (A -;%% , b =2)
describe approximately the circular cylinder body and parabolic trailing-
edge body. The corresponding value of Strouhal number (around 0.2) seems

very close to the usual experimental results. The values of u /U, seem

reasonable also, This is an indication that, in spite of all the assumptions

made, the present mathematical model for the free-shedding mechanism is

ising.
promising 28
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SELF-EXCITED SINGING

A series of numerical calculations was made to illustrate the
existence of the self-excited singing and to clarify its mechanism. As

Is seen in Figure 9a, the following vibrational modes of the blade have
been considered:

(a) 1Ist mode: spanwise bending mode, with g(x) = h = constant
(b) 2nd mode: torsional mode, with g(x) = - h cos ¢
(c) 3rd mode: chordwise bending mode, with g(x) = h cos 29

where the transformation from Cartesian to angular coordinates is given
by x = « %(l+cos @) , C = chord length of blade. The ratio of the separa-
tion-point thickness d to the chord length C is 0.1 .

The numerical work has been performed along the line indicated In the
section on existence of the self-excited singing state (p. 25). in the
first place, the real and imaginary parts of Equation (38) are solved
simultaneously with respect to uo/UQ and a for glven uv/Um and S'.
it may be useful, here, to note the following points:

() uv/Uw , the trigger signal for the synchronization of the
vortex shedding with the blade vibration, is proportional
to the amplitude of the blade vibration and is nothing but
the amplitude of the blade vibration expressed in hydro-
dynamical terms,.

(2) s’ = w'd/u_ is the non-dimensional expression of the
natural frequency of the blade vibration w’ (= the
strong singing frequency) in terms of the blade thick-
ness at the separation points, d , and the flow velocity
at infinity, U

- - The expression $'/S will be used in

place of S', where S = wd/U, , and w |s the free-
shedding angular frequency of the vortices. Since
$'/s = w'/w , $'/S should be named "tuning factor."

Meanwhile, since S = 2ns, (see Equation [28]; St is

29
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the Strouhal number) is constant for a given blade shape
independent of the flow velocity, and since, furthermore,
w’ and d are also constant for the given blade, S’/ =
(w'd/zﬁst) (I/Um) has the sense of a non-dimensional ex-
pression of the reciprocal of the flow velocity U_ .

If the obtained values of uo/U°D and o are applied to Equations (39)-1
and (39)d1I, the limits are determined for the stability of the synchronlza-
tion of the vortex shedding with the blade vibration, under the given blade-
vibration amplitude uv/Um and the given tuning factor S$'/S . In a
similar way, Equation (54) can be used to check and determine whether or
not the hydrodynamic reaction of the shed vortices exerts positive work
upon the blade vibration.

In the actual calculation, owing to the complicated functional form

2u
of f TTQ , it is difficult to solve Equation (38) with respect to

uo/U°° and a for given uv/UOD and S’/S , and, therefore, an auxiliary
procedure is introduced: Equation (38) is solved with respect to uv/Uco
and @ for assumed u°/U°° and S’/S . This procedure gives, for each
value of S’/ , the auxiliary diagrams illustrated in Figures 9b and 9c,
on which are also indicated the ranges where the criteria of Equations (39)
and (54) are satisfied. From these auxiliary diagrams, the final charts
shown in Figures 10a, b, and ¢ are derived, Figures 10a, b, and c exhibit
the two kinds of limit boundaries corresponding to the stable-synchroniza-
tion criterion, Equation (39)-II, and the positive-work criterion, Equa-
tion (54), on a uv/U°° versus S’/S plane. Since the condition imposed

by Equation (39)-II is always more severe than that imposed by Equation (39)-I,

the limit boundary due to the latter is omitted.
0.6

The values used in this calculation for the parameters are A = 5T o
b=2,and a=1, 2, 3. The first two are approximating values for a
parabolic shape of the trailing edge of the body. On the other hand, the
given values of a are mere trial. However, although the choice of a
causes some quantitative effect, as seen in Figures 10a, b, and c, the

qualitative nature does not seem to be altered.

It should be noted that Figures 10a, b, and c indicate whether or not

the assumed value of uv/Ucp satisfies the two criteria, but give no

30
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information with regard to the determination of “V/Um . This is the
problem of the limit-cycle amplitude of the blade vibration, which should
be resolved by considering the balance between the energy !npu; due to

the hydrodynamic reaction force from the shed vortices, Fbe‘w t, and the
energy dissipation due to the damping capacity of the blade. |In regard

to this point, it should be repeated that the non-circulation flow compo-
nent due to the blade vibration exerts no damping effect, and, therefore,
only the mechanical damping should be considered as the damping capacity
of the blade. The existence of the limi~ cycle should be proved through

a strict mathematical consideration, but it may be anticipated by the

fact that the magnitude of the reaction force Fb Is not affected by the
amplitude of the blade vibration as much as the mechanical damping force
Is affected. With increasing amplitude of blade vibration, the reaction
force remains almost unchanged, whereas the damping force increases so
that an energy balance due to these forces will eventually appear. |f the
mechanical damping of the blade is known, one may obtain the locus of the
limit-cycle amplitude on a uv/Um versus S'/S plane (that is, an ampli-
tude versus reciprocal-of-the-flow-velocity plane). If the locus exists
in the region bounded by the two kinds of criterion limits (the region
indicated by mark =« = in Figures 10a, b, and c¢) through a certain
range of $’/s , then the self-excited strong singing which manifests it~
self as a step on the frequency-versus-velocity diagram may appear through
the corresponding range of the flow velocity. When the limit-cycle locus
cuts the stable-synchronization limit, the synchronization of shed vortices
with blade vibration may cease. In other words, the closed loop shown in
Figure 2 is opened, and consequently there should be a jump from the éelf-
excited strong singing state to the weak one with the Strouhal frequency,
While, as seen in Figures 10a, b, and ¢, the stable synchronization limit
seems to occur always as a lower boundary below which the stability is
lost, the positive~work limit manifests itself either as an upper or a
lower boundary, above or below which, respectively, the favorable phase ,
relation between the blade vibration and the hydrodynamic reaction Fbelw t
vanishes, When this limit makes an upper boundary, the limit-cycle locus
does not go up across the limit, because above this boundary the positive

work done by the reaction force can no longer be expected, and further

3
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increase in the limit-cycle amplitude is Iimpossible. On the other hand,
when the positive work limit appears as a lower boundary, the locus can
cross the limit, and once the crossing occurs the amplitude of the blade
vibration suddenly drops to a low value at which the synchronized shedding
condition Is lost. In this case, even If the positive work limit exists
above the stable-synchronization limit, the jump from the strong singing
state to the weak one should appear at this crossing.

Thus the particular feature in the singing-frequency-versus-flow-
velocity relation is Interpreted by the self-exciting model, Further,
provided that the mode shape of blade vibration and its mechanical damping
are given, the quantitative derivation of the frequency-versus-velocity
diagram Is also possible, at least in principle. Before entering into
these quantitative detalils, however, the assumptions and simplifications

adopted in the mathematical development should be refined and reinforced.

" Investigation of most of them is left for future work, but some discussion

is offered below,

The approximations given for the mathematical expressions of the
influence functions S,(x) and S,(x) do not seem to alter the nature
of the problem, at least qualitatively. Their essential function as factors
determining the vortex-shedding frequency comes from the fact that Sl(x)
has a finite value starting with x = 0 , while Sa(x) Is zero at x =0
and has a finite incubation Interval before the rapid increase with x
and later diminishing; and these characteristics of S ,(x) and S,(x)
are kept in the simplified expressions of Equation (11).

Another speculative assumption was made concerning the concentrating
process of the vorticity. To treat the vortex-shedding process in this
way instead of solving the Navier-Stokes equation may be allowable when
the Reynolds number Is not so low and the transportation of the vorticity
by flow is dominant compared with the diffusion of the vorticity due to
viscosity. For such a case, the most reliable method is to trace the path
of each vortex element shed from the separation points, in the manner
utilized by Rosenhead for the Helmholtz instability problem, This seems
within the capacity of the ordinary computer. In the present work, however,
this numerical process was replaced by a largely simplified mathematical

32
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model, in order to introduce into the hydrodynamic problem — as generally
as possible — the concepts developed in the non-linear oscillation theory,
and to clarify the present version of the singing phenomenon as self-excited.
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CONCLUSIONS

A model for the propeller-singing phenomenon considered as a self~
excited oscillation was presented to interpret the step and jump character=

Istics in the singing-frequency-versus-flow-velocity diagram.

The singing system was simulated by a ''closed loop' composed of a
blade as a mechanical vibration system and the vortices-shedding mechanism
which is responsible for the shedding of vortices in synchronization with
blade vibration. The numerical calculations made for several types of
blade-vibration mode shape showed that the criteria for the stability of
the synchronized shedding of vortices, together with the criterion for
the phase relation favorable to positive work done by the hydrodynamic
reaction force of the shed vortices upon the blade vibration, can interpret
the step and jump phenomenon.

In order to introduce the concepts of the non-linear oscillation
theory into the hydrodynamic problem as generally as possible, large sim-
plifications were made in the mathematical expressions, and consequently
the quantitative detailed treatment required for each particular case Iis
left for future work. |
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